Seasonal Nitrous Oxide Emissions From Hydroponic Tomato and Cucumber Cultivation in a Commercial Greenhouse Company

Author:

Karlowsky Stefan,Gläser Markus,Henschel Klaus,Schwarz Dietmar

Abstract

Nitrous oxide (N2O) is considered as the most critical greenhouse gas (GHG) emitted by agricultural and horticultural food production. Hydroponic vegetable cultivation in greenhouse systems has a high potential for N2O emissions due to the intense application of nitrogen-containing fertilizers. Previous studies on model hydroponic systems indicate that N2O emissions per unit area can be several times higher than typically found during field cultivation. However, reliable data from production-scale hydroponic systems is missing. Here we report our findings from monitoring the N2O emissions in a commercial production greenhouse, located in the east of Germany, over a period of 1 year. We used the static chamber method to estimate N2O fluxes in the root zones of hydroponic tomato and cucumber cultures on rock wool growing bags with drip fertigation. Regular sampling intervals (weekly-biweekly) were used to calculate whole season cumulative N2O emissions and N2O emission factors (EFs) based on the amount of nitrogen fertilizer applied. Our results indicate that the seasonal N2O emissions from hydroponic greenhouse cultivation are considerably smaller than expected from previous studies. In total, we estimated average cumulative N2O emissions of 2.3 and 1.5 kg N2O–N ha−1 yr−1 for tomato and cucumber cultures, respectively. Average EFs were 0.31% for tomato cultivation with drain re-use (closed hydroponic system), and 0.13% for cucumber cultivation without drain re-use (open hydroponic system). These values lie below the general EF for N2O from agricultural soils, noted with 1% by the intergovernmental panel on climate change (IPCC). In conclusion, considering the high yield of greenhouse cultivation, hydroponic systems provide a way of producing vegetables climate-friendly, in terms of direct GHG emissions. Further attention should be given to reducing energy inputs, e.g., by using regenerative sources or thermal discharge from industrial processes, and to increasing circularity, e.g., by using recycling fertilizers derived from waste streams. Especially in urban and peri-urban areas, the use of hydroponics is promising to increase local and sustainable food production.

Funder

Bundesministerium für Ernährung und Landwirtschaft

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3