Multi crop high efficiency seed drill with solar hybrid seed metering: A step toward precision and sustainability

Author:

Sultan Umair,Khan Alamgir Akhtar,Husnain Syed Nabeel,Zohaib Muhammad,Hashim Norhashila

Abstract

High crop production with limited energy resources is always the priority area of developing countries. Conventional agricultural experimenting and crop production methods are time-consuming, challenging, laborious, and energy intensive. Various developments and experimental studies have been carried out for advancement in agriculture technologies. This study is mainly focused on the design and development of a unique high-efficiency seed drill machine to increase the energy efficiency of agricultural experiments, and crop production and conserve the tillage, seed, fertilizer, and power requirement. This machine has a special seed dividing head and seed distributor triggered with a mechanical timer. The mechanical timer is responsible to deliver seed to the seed distributor as per fixed plotting intervals. The seed distribution unit distributes the seeds uniformly in all furrows as per the pre-decided seed rate aided with a centrifugal glider aided with a DC motor powered by a 30 W solar PV plate and backup battery. Moreover, the machine has 9 × 9 s-type spring tines for seed and fertilizer, which are mainly designed for better soil pulverization and aeration with significant in-field resource conservation as per conventional alternatives. The effective width is seven feet and adjustable rows with versatile seed rate options. Overall, the results from different field tests verified the uniform seed dispersal with improved germination rate. The analysis of power requirements compared to conventional machines results in the 40% less power requirement. Overall, the machine has customized unique features for experiments and energy-efficient precision agriculture to conserve input resources.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3