Agricultural development driven by the digital economy: improved EfficientNet vegetable quality grading

Author:

Wen Jun,He Jing

Abstract

IntroductionThe conventional manual grading of vegetables poses challenges that necessitate innovative solutions. In this context, our paper proposes a deep learning methodology for vegetable quality grading.MethodsTo address the scarcity of vegetable datasets, we constructed a unique dataset comprising 3,600 images of diverse vegetables, including lettuce, broccoli, tomatoes, garlic, bitter melon, and Chinese cabbage. We present an improved CA-EfficientNet-CBAM model for vegetable quality grading. The CA module replaces the squeeze-and-excitation (SE) module in the MobileNet convolution (MBConv) structure of the EfficientNet model. Additionally, a channel and spatial attention module (CBAM) is integrated before the final layer, accelerating model training and emphasizing nuanced features.ResultsThe enhanced model, along with comparisons to VGGNet16, ResNet50, and DenseNet169, was subjected to ablation experiments. Our method achieved the highest classification accuracy of 95.12% on the cabbage vegetable image test set, outperforming VGGNet16, ResNet50, and DenseNet169 by 8.34%, 7%, and 4.29%, respectively. Notably, the proposed method effectively reduced the model’s parameter count.DiscussionOur experimental results highlight the effectiveness of the deep learning approach in improving vegetable quality grading accuracy. The superior performance of the enhanced EfficientNet model underscores its potential for advancing the field, achieving both high classification accuracy and parameter efficiency. We hope this aligns with your expectations. If there are further adjustments or clarifications needed, please let us know.

Publisher

Frontiers Media SA

Reference37 articles.

1. Detection of mulberry ripeness stages using deep learning models;Ashtiani;IEEE Access,2021

2. VeggieVision: a produce recognition system;Bolle,1996

3. Mean and range color features based identification of common Indian leafy vegetables;Danti;Int. J. Image Process. Pattern Recognit.,2012

4. A method with neural networks for the classification of fruits and vegetables;de Jesús Rubio;Soft. Comput.,2017

5. Fruit and vegetable recognition by fusing color and texture features of the image using machine learning;Dubey;Int. J. Appl. Pattern Recognit.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3