Toward Specialized or Integrated Systems in Northwest Europe: On-Farm Eco-Efficiency of Dairy Farming in Germany

Author:

Reinsch Thorsten,Loza Cecilia,Malisch Carsten Stefan,Vogeler Iris,Kluß Christof,Loges Ralf,Taube Friedhelm

Abstract

Intensive confinement (IC) systems for dairying have become widespread during the last decades. However, potential advantages of alternative systems such as full-grazing (FG) or integrated dairy/cash-crop (IFG) systems with regards to better provision of ecosystem services are widely discussed. To investigate performance and environmental impacts, we compared four prevailing dairy systems using an on-farm research study. The farm types differed in their share of pasture access and quantity of resource inputs: (i) an IC with a high import of supplements and mineral fertilizers; (ii) a semi-confinement (SC) with daytime pasture access during summer and moderate import of supplementary feeds representing the base-line scenario; (iii) a FG based on grazed seeded grass-clover swards with no purchased N-fertilizers and low quantities of supplementary feeds; and (iv) an IFG comparable to FG but based on grass-clover leys integrated in a cash-crop rotation. Results revealed highest milk productivity (16 t energy-corrected-milk (ECM) ha−1) and farm-N-balance (230 kg N ha−1) in IC; however, the highest product carbon footprint (PCF; 1.2 CO2eq kg ECM−1) and highest N-footprint (13 g N kg ECM−1) were found in the baseline system SC. The FG and IFG revealed on average similar forage dry matter yields (10 – 11 t DM ha−1) at similar crude protein and net-energy-lactation ratios per kg DM-intake compared to the IC and SC. The PCF in FG were comparable to IC (0.9 vs. 1.1 kg CO2eq kg ECM−1) but at a lower N-footprint (9 vs. 12 g N kg ECM−1). However, despite low measured N-losses in the FG system, the farm-N-surplus was exceeded by 90 kg N ha−1. A further reduction was only possible in the IFG (50 kg N ha−1) by accounting for a potential N-carry-over from N-rich plant residues to the cash-crop unit, leading to the lowest PCF (0.6 kg CO2eq kg ECM−1) for the IFG, with still moderate milk yield levels (~10,500 kg ECM ha−1). According to this bottom-up approach based on field data, improved integrated grazing systems could provide an important opportunity to increase the ecosystem services from dairy farming, operating with land use efficiencies similar to IC.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3