Investigating bacterial diversity involved in the production of vegetable-based ethnic fermented food of North Bengal and their metabolic pathways with reverse ecology approach

Author:

Ghatani Kriti,Sha Shankar Prasad,Thapa Subarna,Sarkar Indrani,Sen Gargi,Sen Arnab

Abstract

Endemic fermented vegetables play a crucial role in local cuisine and culture, with traditionally fermented raw green vegetables such as gundruk being a popular practice in North Bengal and Sikkim, India. However, there is a gap in the microbial profiling of these vegetables. This study aimed to explore the diversity of dominant bacterial populations in fermented leafy vegetables using both culture-dependent and culture-independent methods. In addition to isolating bacteria using conventional methods, we conducted phenotypic and biochemical characterization, community DNA isolation, and amplicon sequencing. We also introduced a new approach in bioinformatics analysis: reverse ecology, which analyzes complementation and competition among participant microbes. In conventional culture-dependent techniques, LAB genera such as Lactobacillus, Enterococcus, Leuconostoc, and Pediococcus have been identified as predominant consortia, whereas metagenomic analysis revealed that the microbiome of fermented dried leafy vegetables was mainly composed of Firmicutes, Proteobacteria, Actinobacteria, Bacteroides, and Planctomycetes at the phylum level. Within the Lactobacillaceae family, predominant types included Lactobacillus, Lactococcus, Pediococcus, Leuconostoc, Enterococcus, Vagococcus, Weissella, and Carnobacterium. The microbial metabolism revealed key pathways, such as carbon metabolism, glycolysis, gluconeogenesis, and glyoxylate. Aromatic amino acid degradation, fatty acid metabolism, amino sugar metabolism, nucleotide sugar metabolism, and biosynthesis of nucleotide sugar pathways were also active. The competition index among microbes and human metabolic data was low (0.32–0.44), indicating minimal competition for nutrition. Complementation indices between bacteria and humans were high (0.76–0.88), suggesting a beneficial impact of gundruk microbial populations on human health.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3