Application of riparian buffer zone in agricultural non-point source pollution control—A review

Author:

Wu Shaoteng,Bashir Muhammad Amjad,Raza Qurat-Ul-Ain,Rehim Abdur,Geng Yucong,Cao Lei

Abstract

Water is an important natural element of our environment, and its management and security are also serious concerns. Agricultural non-point source pollution (NPSP) is one of the major sources of contaminants causing water quality degradation. A riparian buffer zone is a vegetative cover adjacent to water channels that positively contributes to pollutant filtration and sediment trapping. It has the potential to filter nutrients, reduce nutrients and pesticide leakage, provide habitat and protection against floods, minimize erosion issues, improve biodiversity and ecological connectivity, and add aesthetics to the area. Moreover, it is inexpensive and requires little maintenance making buffer zone an attractive approach to NPSP control. In this review, we have enlightened the effects of the riparian buffer zone on water quality and agricultural NPSP and how its structures and mechanisms contribute to controlling water pollution effectively. We conclude that the riparian buffer zone is an effective technique for water safety, NPSP control, and creating a suitable environment for terrestrial and aquatic species. Moreover, it has the potential to reduce the water temperature due to the shading effect and sustain water habitat acting as a climate adaptation tools. Buffer zones should be adopted for agricultural non-point source pollution and achieve environmental sustainability. However, the long-term influence of the riparian buffer zone on trapping NPS pollutants, soil properties, and groundwater quality is s research gap.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3