Enhancing irrigated forage crop production through water and nutrient management in the Ethiopian sub-humid highlands

Author:

Hussein Misbah A.,Haileslassie Amare,Derseh Melkamu B.,Assefa Tewodros T.,Riga Fikadu T.,Adie Aberra,Tebeje Aschalew K.,Jones Chris S.,Tilahun Seifu A.

Abstract

IntroductionThe increasing pressure on land and water resources, fueled by high population growth and climate change, has profound implications for crop yield and quality. While studies thrive for various crops, a notable research gap exists in understanding the responses of forage crops to irrigation and nutrient management in developing countries. This study aims to address this gap by assessing the impact of irrigation and fertilizer application on forage production in the Ethiopian sub-humid highlands.MethodsThe experiment focused on four forage varieties, namely Napier grass (Cenchrus purpureus) cultivars, ILRI-16791, ILRI-16819, ILRI-16803, and Guinea grass (Megathyrsus maximus) ILRI-144 cultivated in experimental plots. Three irrigation levels designated as IR60 (60% of total available soil water), IR80 (80%), and IR100 (100%) were applied, along with three fertilizer rates: organic manure at 30 t ha−1, and Urea-N at 100 kg ha−1 and 300 kg ha−1. Agronomic data including growth performance, forage dry matter yield, and nutritional quality were collected during two trial years.Results and discussionAmong the various irrigation treatments, IR80 demonstrated the most favorable balance between forage yield, WUE, net benefit, and LWP. In addition, the highest DMY, WUE, net benefit, and LWP were obtained for UREA at the rate of 300 kg ha−1 while the lowest DMY and WUE were observed for UREA at the rate of 100 kg ha−1. Significant variations were observed among the four forage varieties, with Napier grass ILRI-16791 having the highest DMY (9.8 tons ha−1), WUE (39 kg ha−1 mm−1), LWP (0.28 USD m−3 for local cows, and 1.04 USD m−3 for crossbred cows), and net benefit (783 USD ha−1). For all forages combined, a 40 and 20% decrease in irrigation increased water use efficiency by 17 and 9.4%, respectively. These results indicate that a moderate level of deficient irrigation such as IR80 could be a viable water management strategy for irrigated forage, especially in water-scarce areas. The conserved water saved from the deficit irrigation can thus be used to irrigate additional land, contributing to a more sustainable and efficient water usage approach.

Funder

U.S. Agency for International Development

Publisher

Frontiers Media SA

Reference89 articles.

1. Interactive effect of deficit irrigation and soil organic amendments on seed yield and flavonolignan production of milk thistle (Silybum marianum L. Gaertn.);Afshar;Ind. Crop. Prod.,2014

2. Growth, yield, yield components and water-use efficiency in irrigated cantaloupes under full and deficit irrigation;Ahmadi-Mirabad;Electron. J. Biol.,2014

3. Productivity and water use efficiency of sorghum [sorghum bicolor (L.) moench] grown under different nitrogen applications in Sudan savanna zone, Nigeria;Ajeigbe;Int. J. Agron.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3