Modeling management of continuous dryland cotton with an intervening winter wheat cover crop in a semiarid climate

Author:

Mauget Steven A.,Himanshu Sushil K.,Goebel Tim S.,Ale Srinivasulu,Payton Paxton,Lewis Katie,Baumhardt R. Louis

Abstract

Although winter cover crop residue can mitigate the stresses of dryland production in semi-arid regions, cover crops can also reduce soil moisture and cash crop yields. In some field studies of dryland cotton grown after terminated winter wheat in the U.S. Southern High Plains (SHP) and Texas Rolling Plains cotton yields were increased relative to continuous cotton, while others had no significant yield or soil water effect. These uncertain outcomes may be due to the trial's limited sampling of seasonal rainfall conditions. To estimate the probabilities of cover crop effects under more representative SHP climate conditions, 294 station-years of crop model simulations of terminated winter wheat followed by dryland cotton were conducted. These simulations were driven by weather data from 21 SHP weather stations during 2005–2019. Each station-year's simulations were repeated under 54 combinations of wheat planting, termination, and cotton planting dates, 2 soil series with different water capacities, and 10 initial soil moisture conditions. When simulations begin with fall soil moisture at field capacity optimal management options for both soils plant wheat early and cotton late, but have different wheat termination dates. Before cotton planting winter cover crop effects are dominated by reduced surface evaporation and increased transpiration, with greater transpiration effects producing decreased column soil moisture (CSM) at wheat termination. Some soil moisture recharge occurs between termination and cotton planting, but cover crops reduce CSM at cotton planting in both soils in ~75% of simulations. Reduced soil evaporation and soil moisture recovery continues after cotton planting, resulting in positive effects on seed cotton yield in 50% of the silty clay loam simulations and in 67% of the fine sandy loam simulations. Gradually reducing initial fall soil moisture in the silty clay loam reduces wheat biomass but increases the incidence of positive effects on seed cotton yields and CSM at cotton planting and harvest. By contrast, drier initial soil moisture in the fine sandy loam had relatively minor yield and CSM effects. In both soils terminated wheat residue led to increased CSM at cotton harvest in at least 70% of the simulations regardless of soil moisture at wheat planting.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference44 articles.

1. Management impact and benefit of cover crops on soil quality: a review;Adetunji;Soil Till. Res,2020

2. Simulated effects of winter wheat cover crop on cotton production systems of the Texas Rolling Plains;Adhikari;T. ASABE,2017

3. Managing cover crops in conservation tillage systems;Balkcom;Sustainable Agriculture Research and Education (SARE),2007

4. Water budget and yield of dryland cotton intercropped with terminated winter wheat;Baumhardt;Agron. J,1999

5. Experience with water balance, evapotranspiration, and predictions of water stress effects in the CROPGRO model;Boote;Response of Crops to Limited water: Understanding and Modelling Water Stress Effects on Plant Growth Processes,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3