Effect of land rehabilitation measures on soil organic carbon fractions in semi-arid environment

Author:

Mutio James Mumo,Kebeney Syphyline,Njoroge Ruth,Churu Harrison,Ng'etich Wilson,Mugaa Denis,Alkamoi Boniface,Wamalwa Fred

Abstract

Soil erosion threatens the sustainable intensification of food systems among smallholder farmers in arid and semi-arid lands (ASALs). Intensifying adoption of soil mitigation and rehabilitation measures is thus needed urgently in these ASALs, but scaling up these measures depends on scientific evidence of their contributions to key components of sustainable intensification such as soil organic carbon. However, there is no information on how existing mitigation and rehabilitation measures influence soil carbon fractions and carbon management indices in ASALs. This study evaluated the influence of soil erosion mitigation and rehabilitation measures on soil carbon fractions and management indices in Arenic Lixisols of semi-arid environments in West Pokot County, Kenya. We evaluated different vegetation types (maize-beans intercrop and pastures) with and without two locally developed terrace designs for soil conservation (Fanya Juu and Fanya Chini). Combining terracing with annual cropping significantly increased total organic carbon (TOC). The highest TOC (13 g C kg−1) was recorded in pasturelands with terraces while degraded land with no intervention was found to have the lowest TOC (6.0 g C kg−1). Terraced farms with longer residence time (>4 years old) had significantly higher organic carbon than (<4 years old). Other soil properties remained stable with terrace age (1–5 years). Labile SOC and non-labile SOC differed significantly within and across vegetation types with or without terraces (p < 0.05). Pasture and crop systems with terraces had high labile SOC content of 5.9 g C kg−1 and 7.2 g C kg−1, respectively. Labile SOC followed the TOC trend with terrace age, i.e., increasing from 1 year to 5 years old. Combined pasture and terraces had a significantly higher carbon management index (CMI) of 161.7, or 14 times the CMI found in degraded systems with no interventions and 1.5 times the combined crop system with terraces. CMI was also directly correlated with residence time terraces had stayed in the crop system, increasing from 1 year to 5 years old. Contrary to CMI and other indices, the weighted enrichment ratio was found to inversely correlate with age of terrace. Improvement of carbon content and CMI resulted from restorative measures and likely improved soil quality and ecosystem functions. Although terraces play a significant role in the restoration of degraded soils as indicated by the above-mentioned changes, they are most beneficial when used in combination with croplands because of the high level of disturbance and flows of both inputs and outputs of carbon for these croplands.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3