Experimental investigation of the characteristic of vacuum spray cooling for tofu

Author:

Li Gailian,Han Lucong,Du Shuaihua,Peng Yuhang,Zhang Zhenya,Cheng Chuanxiao,Jin Tingxiang

Abstract

The present study proposes a rapid cooling method based on vacuum spray cooling, and establishes an experimental system to study the cooling performance of this method by taking tofu as an example. In this study, the effects of vacuum spray cooling, vacuum cooling and immersion vacuum cooling on the cooling rate, water holding rate, PH, TPA and other properties of tofu were compared. The total cooling time of vacuum spray cooling (13.86 min) was shorter than that of immersion vacuum cooling (33.39 min) but longer than that of vacuum cooling (10.64 min) for a temperature decrease from 70°C to 4°C. For weight loss from 70°C to 4°C, vacuum spray cooling (2.96%) was significantly less than that of vacuum cooling (10.21%). The PH value after cooling has no significant difference, but the color difference and water holding capacity of the sample after vacuum spray cooling are obviously better. However, the textural properties of the sample cooled by vacuum spray cooling were close to (for elasticity and viscosity) and better (for hardness and chewiness) than those of immersion vacuum cooling. In addition, compared with the two cooling methods in terms of storage, vacuum spray cooling can effectively maintain the moisture content, water holding rate, PH, chromatism and TPA of tofu, thus extending the fresh-keeping period of tofu. The conclusions of this paper provide theoretical support for prolonging the preservation period of food and optimizing the cooling process.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3