Unreliability of clustering results in sensory studies and a strategy to address the issue

Author:

Kumar Rajesh,Chambers Edgar

Abstract

Researchers commonly use hierarchical clustering (HC) or k-means (KM) for grouping products, attributes, or consumers. However, the results produced by these approaches can differ widely depending on the specific methods used or the initial “seed” aka “starting cluster centroid” chosen in clustering. Although recommendations for various clustering techniques have been made, the realities are that objects in groups can, and do, change their clusters. That can impact interpretation of the data. Researchers usually does not run the clustering algorithms multiple times to determine stability, nor do they often run multiple methods of clustering although that has been recommended previously. This study applied hierarchical agglomerative clustering (HAC), KM and fuzzy clustering (FC) to a large descriptive sensory data set and compared attribute clusters from the methods, including multiple iterations of same methods. Sensory attributes (objects) shuffled among clusters in varying ways, which could provide different interpretations of the data. That frequency was captured in the KM output and used to form the “best possible” clusters via manual clustering (MC). The HAC and FC results were studied and compared with KM results. Attribute correlation coefficients also were compared with clustering information. Using results from one clustering approach may not be reliable, and results should be confirmed using other clustering approaches. A strategy that combines multiple clustering approaches, including a MC process is suggested to determine consistent clusters in sensory data sets.

Publisher

Frontiers Media SA

Reference39 articles.

1. A heterogeneous cluster ensemble model for improving the stability of fuzzy cluster analysis;Bedalli;Procedia Comput. Sci.,2016

2. Flavor description and classification of selected natural cheeses;Chambers,2005

3. Development of a “living” lexicon for descriptive sensory analysis of brewed coffee;Chambers;J. Sens. Stud.,2016

4. Univariate, Bivariate, and Multivariate Statistics Using R

5. Three good reasons NOT to use factor-cluster segmentation;Dolnicar,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3