High-throughput screening of natural compounds for prophage induction in controlling pathogenic bacteria in food

Author:

Tompkins Elizabeth,Cadieux Brigitte,Amitrano Margot,Goodridge Lawrence

Abstract

Introduction: The clean label trend emphasizes the need for natural approaches to combat pathogenic bacteria in food. This study explores the potential of inducing prophages within bacterial genomes as a novel strategy to control pathogenic and spoilage bacterial growth.Methods: A luminescence-based high-throughput assay was developed to identify natural compounds capable of inducing prophages. Bioactive compounds from four chemical libraries were screened at a final concentration of 10 µM. The assay measured luminescence production in Escherichia coli BR513, a genetically modified strain producing β-galactosidase upon prophage λ induction. Luminescence values were normalized to cell concentration (OD600) and the interquartile mean of each 384-well plate. A cut-off for normalized luminescence values, set at 2.25 standard deviations above the mean, defined positive prophage induction.Results: Four naturally-derived compounds (osthol, roccellic acid, galanginee, and sclareol) exhibited positive prophage induction, along with previously identified inducers, rosemary, and gallic acid. Dose-response experiments were conducted to determine optimal concentrations for prophage induction. However, the results could not distinguish between prophage-induced cell death and other mechanisms, making it challenging to identify ideal concentrations.Discussion: The high-throughput luminescent prophage induction assay serves as a valuable tool for the initial screening of natural bioactive compounds that have the potential to enhance food safety and quality by inducing prophages. Further research is required to understand the mechanism of bacterial cell death and to establish optimal concentrations for prophage induction in a food preservation context.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3