Constraining effects on polymer chain relaxation in crosslinked supramolecular dual networks

Author:

Feng Jasper,Allgaier Jürgen,Kruteva Margarita,Förster Stephan,Pyckhout-Hintzen Wim

Abstract

Polymer networks containing transient physical and permanent chemical cross-links exhibit unique mechanical properties due to the intrinsic reassociating ability of supramolecular functional groups. Similar to supramolecular gels, these networks allow the controlled release of stored energy and can extend the life of polymer networks in practical applications. In this study, we investigated the rheology, dielectric spectroscopy, stress–strain behavior, and dynamic mechanical analysis of networks based on long polybutylene oxide (PBO) chains functionalized with randomly placed thymine (Thy) side groups. A transient network was formed by proportionally mixing this matrix with short non-entangled linear 1,3,5-diaminotriazine (DAT) head–tail modified PBO chains, exploiting the hetero-complementarity of the DAT–Thy triple hydrogen bond. This transient polymer network was further cross-linked to a dual network via a thiol-ene click reaction to form static covalent bonds. In PBO, the similar polarity of the PBO matrix and the DAT–Thy functional groups ensures that the molecular chain motion is not affected by segregation, resulting in a homogeneous polymer phase without microphase-separated functional group domains. Dielectric relaxation spectroscopy was combined with rheology to quantify the relaxation processes of the interconnected polymers and the strength of the DAT–Thy bonding interactions in the melt. The results showed two distinct plateaux in the relaxation modulus due to contributions from hydrogen and permanent bonds. In the case of the dual network, the lifetime of the hydrogen bond was prolonged and higher activation energy was observed due to the physical cross-link preventing the movement of the long chain.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3