Untangling effects of proteins as stabilizers for foam films

Author:

Gräff Kevin,Stock Sebastian,Mirau Luca,Bürger Sabine,Braun Larissa,Völp Annika,Willenbacher Norbert,von Klitzing Regine

Abstract

Foam film’s properties have a high impact on the properties of the macroscopic foams. This work focusses on protein stabilized foam films. The direct comparison of three different proteins with a concentration normalized to the protein surface enables to distinguish between electrostatic, steric and network stabilization effects. In order to untangle those effects, we study and compare two globular proteins (β − lactoglobulin, BLG, and bovine serum albumin, BSA) and a disordered, flexible protein (whole casein, CN) at low ionic strengths with varying solution pH. Image intensity measurement as a recently developed image analysis method in this field allows to record spatially resolved disjoining pressure isotherms in a Thin Film Pressure Balance (TFPB). This reveals insights into the structure formation in inhomogeneous protein films. As a novel method we introduce tracking inhomogeneities (features) which enables the measurement of interfacial mobility and stiffness of foam films. Around the isoelectric point (IEP), Newton Black Films (NBF) form which are stable for the globular proteins while they are unstable for the disordered flexible one. This difference in film stability is explained by different characteristics of the network structures which is supported by findings in the bulk and at the surface of the respective protein solutions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3