LabSAR, a one-GCP coregistration tool for SAR–InSAR local analysis in high-mountain regions

Author:

Weissgerber Flora,Charrier Laurane,Thomas Cyril,Nicolas Jean-Marie,Trouvé Emmanuel

Abstract

The coregistration of single-look complex (SLC) SAR images for InSAR or offset tracking applications is often performed by using an accurate DEM and precise orbital information. However, in cold regions, such DEMs are rare over high-latitude areas or not up-to-date over fast melting glaciers for instance. To overcome this difficulty, we propose in this article a coregistration method preserving InSAR phase information that only requires a 3D point of reference instead of a full DEM. Developed in a Python toolbox called LabSAR, the proposed method only uses orbital information to coregister the images on the sphere centered on the Earth center passing by the ground control point (GCP). Thanks to the use of the orbital information, the so-called orbital fringes are compensated without having to estimate them. This coregistration method is compared to other approaches in two different types of applications, InSAR and offset tracking, on a PAZ Dual-Pol Temporal Stack covering the Mont Blanc massif (western European Alps). First, InSAR measurements from LabSAR are compared with the results of the Sentinel-1 ESA toolbox (SNAP). The LabSAR interferograms exhibit clearer topographical fringes, with fewer parameters to set. Second, offset tracking based on LabSAR coregistated images is used to measure the displacement of the Bossons glacier. The results are compared with those obtained by a conventional approach developed in the EFIDIR tools. By evaluating the uncertainties of both approaches using displacements over stable areas and the temporal closure error, similar uncertainty values are found. However, velocity values differ between the two approaches, especially in areas where the altitudes are different from the altitude of the reference point. The difference can reach up to 0.06 m/day, which is in the range of the glacier velocity measurement uncertainty given in the literature. The impact of the altitude of the reference point is limited: this single GCP can be chosen at the median altitude of the study area. The error margin on the knowledge of this altitude is 1,000 m, which is sufficient for the altitude to be considered as known for a wide range of study area in the world.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3