Monitoring the Impact of Rapid Urbanization on Land Surface Temperature and Assessment of Surface Urban Heat Island Using Landsat in Megacity (Lahore) of Pakistan

Author:

Farid Nasir,Moazzam Muhammad Farhan Ul,Ahmad Sajid Rashid,Coluzzi Rosa,Lanfredi Maria

Abstract

The present study focused on rapid urbanization due to the change in the existing landforms which has caused substantial adverse impacts on Urban Thermal Environment. In the present study, we have acquired the Landsat data (TM and OLI) for the years 1990, 2000, 2010, and 2020 to observe the land use changes (vegetation cover, built up land, barren land, and water) in Lahore using the supervised image classification method. Later, the impact of urbanization has been examined with Land Surface Temperature (LST) and eventually the Surface Urban Heat Island (SUHI) has been calculated. Accuracy of the classified images revealed an overall accuracy (Kappa co-efficient) of 95.3% (0.929%), 92.05% (0.870%), 89.7% (0.891%), and 85.8% (0.915%) for the years 1990, 2000, 2010, and 2020, respectively. It was found that vegetation cover decreased from 60.5% in 1990 to 47.7% in 2020 at the cost of urbanization. The overall built-up land increased by 23.52% from 1990 to 2020. Urbanization has influenced the LST, and it was examined that maximum LST consistently increased with increase in built-up land. The difference between urban and rural buffer reveals that SUHI has also been increasing over the years. SUHI has been raised from 1.72 C in 1990 to 2.41 C in 2020, and about 0.69 C relative change has been observed. It has also been observed that the Normalized Difference Vegetation Index (NDVI) and LST have an inverse relationship. The research outcomes of this study are useful for urban climatologists, urban planners, architects, and policymakers to devise climate resilient policies, structure, and decisions to balance the urban green spaces for a healthy urban environment.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3