A reproducible and replicable approach for harmonizing Landsat-8 and Sentinel-2 images

Author:

Marujo Rennan de Freitas Bezerra,Carlos Felipe Menino,Costa Raphael Willian da,Arcanjo Jeferson de Souza,Fronza José Guilherme,Soares Anderson Reis,Queiroz Gilberto Ribeiro de,Ferreira Karine Reis

Abstract

Clouds and cloud shadows significantly impact optical remote sensing. Combining images from different sources can help to obtain more frequent time series of the Earth’s surface. Nevertheless, sensor differences must be accounted for and treated before combining images from multiple sensors. Even after geometric correction, inter-calibration, and bandpass, disparities in image measurements can persist. One potential factor contributing to this phenomenon is directional effects. Bidirectional reflectance distribution function (BRDF) corrections have emerged as an optional processing method to soften differences in surface reflectance (SR) measurements, where the c-factor is one of the available options for this task. The c-factor efficiency is well-proven for medium spatial resolution products. However, its use should be restricted to images from sensors with a narrow view since it causes subtle changes in the processed images. There are currently a limited number of open tools for users to independently process their images. Here, we implemented the required tools to generate a Nadir BRDF-Adjusted Surface Reflectance (NBAR) product through the c-factor approach, and we evaluated them for a study area using Landsat-8 and Sentinel-2 images. Several comparisons were conducted to verify the SR and NBAR differences. Initially, a single-sensor approach was adopted and later a multi-source approach. Notably, NBAR products exhibit fewer disparities compared to SR products (prior to BRDF corrections). The results reinforce that the c-factor can be used to improve time series compatibility and, most importantly, provide the tools to allow users to generate the NBAR products themselves.

Funder

Fundo Amazônia

Banco Nacional de Desenvolvimento Econômico e Social

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3