Machine learning for efficient segregation and labeling of potential biological sounds in long-term underwater recordings

Author:

Parcerisas Clea,Schall Elena,te Velde Kees,Botteldooren Dick,Devos Paul,Debusschere Elisabeth

Abstract

Studying marine soundscapes by detecting known sound events and quantifying their spatio-temporal patterns can provide ecologically relevant information. However, the exploration of underwater sound data to find and identify possible sound events of interest can be highly time-intensive for human analysts. To speed up this process, we propose a novel methodology that first detects all the potentially relevant acoustic events and then clusters them in an unsupervised way prior to manual revision. We demonstrate its applicability on a short deployment. To detect acoustic events, a deep learning object detection algorithm from computer vision (YOLOv8) is re-trained to detect any (short) acoustic event. This is done by converting the audio to spectrograms using sliding windows longer than the expected sound events of interest. The model detects any event present on that window and provides their time and frequency limits. With this approach, multiple events happening simultaneously can be detected. To further explore the possibilities to limit the human input needed to create the annotations to train the model, we propose an active learning approach to select the most informative audio files in an iterative manner for subsequent manual annotation. The obtained detection models are trained and tested on a dataset from the Belgian Part of the North Sea, and then further evaluated for robustness on a freshwater dataset from major European rivers. The proposed active learning approach outperforms the random selection of files, both in the marine and the freshwater datasets. Once the events are detected, they are converted to an embedded feature space using the BioLingual model, which is trained to classify different (biological) sounds. The obtained representations are then clustered in an unsupervised way, obtaining different sound classes. These classes are then manually revised. This method can be applied to unseen data as a tool to help bioacousticians identify recurrent sounds and save time when studying their spatio-temporal patterns. This reduces the time researchers need to go through long acoustic recordings and allows to conduct a more targeted analysis. It also provides a framework to monitor soundscapes regardless of whether the sound sources are known or not.

Funder

LifeWatch—Niclas Öberg Foundation

Publisher

Frontiers Media SA

Reference54 articles.

1. Diversity of sound production in fish;Amorim;Commun. Fishes,2006

2. Detection of invasive fish species with passive acoustics: discriminating between native and non-indigenous sciaenids;Amorim;Mar. Environ. Res.,2023

3. Principles of Marine Bioacoustics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3