Toward understanding land use land cover changes and their effects on land surface temperature in yam production area, Côte d'Ivoire, Gontougo Region, using remote sensing and machine learning tools (Google Earth Engine)

Author:

Aka Kadio S. R.,Akpavi Semihinva,Dibi N’Da Hyppolite,Kabo-Bah Amos T.,Gyilbag Amatus,Boamah Edward

Abstract

Land use and land cover (LULC) changes are one of the main factors contributing to ecosystem degradation and global climate change. This study used the Gontougo Region as a study area, which is fast changing in land occupation and most vulnerable to climate change. The machine learning (ML) method through Google Earth Engine (GEE) is a widely used technique for the spatiotemporal evaluation of LULC changes and their effects on land surface temperature (LST). Using Landsat 8 OLI and TIRS images from 2015 to 2022, we analyzed vegetation cover using the Normalized Difference Vegetation Index (NDVI) and computed LST. Their correlation was significant, and the Pearson correlation (r) was negative for each correlation over the year. The correspondence of the NDVI and LST reclassifications has also shown that non-vegetation land corresponds to very high temperatures (34.33°C–45.22°C in 2015 and 34.26°C–45.81°C in 2022) and that high vegetation land corresponds to low temperatures (17.33°C–28.77°C in 2015 and 16.53 29.11°C in 2022). Moreover, using a random forest algorithm (RFA) and Sentinel-2 images for 2015 and 2022, we obtained six LULC classes: bareland and settlement, forest, waterbody, savannah, annual crops, and perennial crops. The overall accuracy (OA) of each LULC map was 93.77% and 96.01%, respectively. Similarly, the kappa was 0.87 in 2015 and 0.92 in 2022. The LULC classes forest and annual crops lost 48.13% and 65.14%, respectively, of their areas for the benefit of perennial crops from 2015 to 2022. The correlation between LULC and LST showed that the forest class registered the low mean temperature (28.69°C in 2015 and 28.46°C in 2022), and the bareland/settlement registered the highest mean temperature (35.18°C in 2015 and 35.41°C in 2022). The results show that high-resolution images can be used for monitoring biophysical parameters in vegetation and surface temperature and showed benefits for evaluating food security.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3