Author:
Hu Yongxiang,Lu Xiaomei,Zhai Peng-Wang,Hostetler Chris A.,Hair Johnathan W.,Cairns Brian,Sun Wenbo,Stamnes Snorre,Omar Ali,Baize Rosemary,Videen Gorden,Mace Jay,McCoy Daniel T.,McCoy Isabel L.,Wood Robert
Abstract
A neural-network algorithm that uses CALIPSO lidar measurements to infer droplet effective radius, extinction coefficient, liquid-water content, and droplet number concentration for water clouds is described and assessed. These results are verified against values inferred from High-Spectral-Resolution Lidar (HSRL) and Research Scanning Polarimeter (RSP) measurements made on an aircraft that flew under CALIPSO. The global cloud microphysical properties are derived from 14+ years of CALIPSO lidar measurements, and the droplet sizes are compared to corresponding values inferred from MODIS passive imagery. This new product will provide constraints to improve modeling of Earth’s water cycle and cloud-climate interactions.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献