Apparent surface-to-sky radiance ratio of natural waters including polarization and aerosol effects: implications for above-water radiometry

Author:

Harmel Tristan

Abstract

Above-water radiometry (AWR) methods have been developed to provide “ground-truth” (or fiducial) measurements for calibration and validation of the water color satellite missions. AWR is also an important tool for environmental survey from dedicated field missions. Under clear sky, the critical step of AWR is to retrieve the water-leaving radiance from radiometric measurements of the upward radiance that also includes the reflection of the direct sunlight and diffuse skylight reflected by the wind ruffled water surface toward the sensor. In order to correct for the surface reflection, sky radiance measurements are performed and converted into surface radiance through a factor often called “sea surface reflectance factor” or “effective Fresnel reflectance coefficient”. Based on theoretical and practical considerations, this factor was renamed surface-to-sky radiance ratio, Rss, to avoid misuse of the term reflectance as often encountered in the literature. Vector radiative transfer computations were performed over the spectral range 350–1,000 nm to provide angular values of Rss for a comprehensive set of aerosol loads and types (including maritime, continental desert and polluted models) and water surface roughness expressed in wave slope variances or in equivalent Cox-Munk wind speeds, for practical use. After separating direct and diffuse light components, it was shown that the spectral shape and amplitude of Rss are very sensitive to aerosol load and type even for extremely low values of the aerosol optical thickness. Uncertainty attached to Rss was computed based on propagation of errors made in aerosol and surface roughness parameters demonstrating the need to adapt the viewing geometry according to the Sun elevation and to associate concurrent aerosol measurements for optimal AWR protocols.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3