Polarization as a Discriminator of Light-Absorbing Impurities in or Above Snow

Author:

Ottaviani Matteo

Abstract

This conceptual study presents advanced radiative transfer computations of light polarization originating from a snowpack consisting of nonspherical grains and variable content of light-absorbing impurities, either embedded in the snowpack or (with the same optical properties) lofted above it in the form of atmospheric aerosols. The results highlight the importance of considering shapes other than spherical for the snow grains, which otherwise can lead to non-negligible errors in the retrieval of snow albedo from remote sensing observations. More importantly, it is found that polarimetric measurements provide a means to partition light-absorbing impurities embedded in the snowpack from absorbing aerosols aloft, a task traditionally prohibitive for sensors capable exclusively of measurements of total reflectance. Heritage techniques to obtain snow grain size from shortwave infrared observations of total reflectance are well established, as are those that leverage polarimetric, multiangular observations across the entire optical spectrum to characterize the optical and microphysical properties of atmospheric aerosols. The polarization signatures of near-infrared (e.g., 864 nm) observations carry critical information on snow grain shape. The prospected launch of space-borne polarimeters with proven accuracy, therefore, advocates for the development of data inversion schemes, to boost the accuracy of simultaneous retrievals of atmospheric and surface parameters in the polar and snow-covered regions, critical to climate studies.

Funder

Goddard Institute for Space Studies

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3