Multivariate-coupling LOCA prediction using zLSTM

Author:

Li Xichen,Chen Xiang,She Jingke,Zhang Yifan,Wang Taizhe

Abstract

A novel deep learning model zLSTM, which evolves from Long-Short Term Memory (LSTM) with enhanced long-term processing capability, is applied to the prediction of Loss of Coolant Accident (LOCA). During the prediction process, six-dimensional multivariate coupling is established among six major system parameters after connecting each timestep with the time dimension. The demonstration experiments show that the proposed method can increase the prediction accuracy by 35.84% comparing to the traditional LSTM baseline. Furthermore, zLSTM model follows the parameter progress well at the starting stage of LOCA, which reduces the prediction error at both the beginning and the far end.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

Frontiers Media SA

Reference14 articles.

1. Numerical study on influence of blowdown parameter on coolant blowdown characteristic in LOCA;Bingzheng;Atomic Energy Sci. Technol.,2020

2. GRU-CNN-Based prediction of LOCA accident condition in nuclear power plants;Fukun,2022

3. Multivariate time series prediction for loss of coolant accidents with a zigmoid-based LSTM;Gong;Front. Energy Res.,2022

4. Exploiting multi-CNN features in CNN-RNN based dimensional emotion recognition on the OMG in-the-Wild dataset;Kollias;IEEE Trans. Affect. Comput.,2020

5. Prediction of nuclear reactor vessel water level using deep neural networks;Koo,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3