Optimized precipitation process for the treatment of radioactive effluents from Ni-alloy decontamination using a chemical oxidation reduction process

Author:

Robin Mathurin,Rivonkar Aditya,Suzuki-Muresan Tomo,Abdelouas Abdesselam,Mokili Marcel

Abstract

Nuclear power plays a major role in the generation of electricity with low carbon emissions. However, it generates significant amounts of radioactive waste, mainly from contaminated metallic components such as steam generators. Decontamination is essential for the safe handling and eventual recycling or disposal of these materials. Various decontamination techniques can be utilized but chemical processes are recommended for complex geometries such as the tubular parts of steam generators. COREMIX (Chemical Oxidation REduction using nitric permanganate and oxalic acid MIXture) is a process that is similar to the CORD (Chemical Oxidation Reduction Decontamination) process currently utilized in the industry which involves dissolving the contaminated oxide layers from metallic surfaces. This process generates a large quantity of radioactive effluent that requires appropriate treatment. The objective is to reduce metallic concentration and the radioactivity by precipitating metals in solution as hydroxides M(m-n)(OH)n (with m the oxidation number of the metal M). The optimization of a two-step precipitation protocol is presented here, with a study of the contact time (1–24 h) and the reagents used (NaOH and KOH). The resulting precipitates from this process are characterized using several techniques (FTIR, TGA and XRD). Tests were conducted on surrogate samples to demonstrate the viability of the process on more complex samples. Finally, the optimized protocols were implemented on radioactive Ni-alloy samples. Decontamination factors were calculated portraying the efficiency of both the COREMIX and the subsequent two-stage precipitation process. Characterization of the sludge produced during the process shows that the precipitate obtained at pH 8.5 consists mainly of iron (III) oxide-hydroxides, whereas the precipitate obtained at pH 12 is mainly composed of manganese (II,III) oxide. The optimization steps show that the contact time during the first precipitation and the choice of precipitants does not influence the efficiency of the protocol while the destruction of oxalic acid proves to be critical to quantitatively precipitate chromium. Ultimately, the COREMIX process can effectively decontaminate contaminated Ni-alloy samples, removing between 12% and 14% of the contamination in each cycle. Decontamination of effluent using the precipitation protocol results in a very high decontamination factor of between 3000 and 6000.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3