Uptake of selected organic ligands by hardened cement paste: Studies on proxy ligands for the degradation of polyacrylonitrile and general considerations on the role of different functionalities in the uptake process

Author:

Szabo P. G.,Tasi A. G.,Gaona X.,Maier A. C.,Hedström S.,Altmaier M.,Geckeis H.

Abstract

The uptake of α-hydroxyisobutyric acid (HIBA), 3-hydroxybutyric acid (HBA) and glutaric acid (GTA) by hardened cement paste (HCP) in the degradation stage II was investigated at various ligand concentrations (10−7 M ≤ [L]tot ≤ 0.1 M) and solid-to-liquid ratios (0.2 g⋅dm−3S:L ≤ 50 g⋅dm−3). These organic ligands were previously identified as representative of the main degradation products of UP2W, a polyacrylonitrile-based material used as filter aid in nuclear power plants, under repository conditions. Sorption experiments were conducted with inactive (HIBA, HBA, GTA) and active (14C-labelled GTA) organic ligands. Sorption experiments show a weak uptake of HIBA and HBA by HCP, with distribution coefficients determined as Rd (HIBA) = (2.2 ± 1.3)⋅10−3 m3⋅kg−1 and Rd (HBA) = (1.6 ± 0.8)⋅10−3 m3⋅kg−1. A stronger uptake is observed for GTA, i.e. Rd (GTA) = (1.3 ± 0.5)⋅10−2 m3⋅kg−1, likely reflecting the contribution from the ligand’s second carboxylate group. GTA follows a linear sorption behaviour within 10−7 M ≤ [GTA]tot ≤ 0.1 M, which was successfully modelled with a one-site Langmuir isotherm. The adsorption capacity determined for the uptake of GTA by HCP is slightly higher but in line with the capacity previously reported for isosaccharinic acid (ISA), whereas the affinity constant derived for GTA is significantly lower than values reported for stronger binding sites in HCP for the uptake of ISA. HIBA and HBA have a minor impact on the surface charge of HCP up to [L]tot ≈ 0.1 M. On the contrary, GTA induces a clear decrease in the surface charge above [GTA]tot ≈ 10−3 M resulting in an isoelectric point at [GTA]tot ≈ 6⋅10−2 M. Comparison of sorption data obtained in this work and reported in the literature for organic ligands containing the functional groups -COOH and -OH underlines the key role of multiple functionalities as a factor strengthening the interaction with the HCP surface. The participation of alcohol groups is particularly strong when present in their deprotonated state. These results provide information to quantitatively assess the uptake by HCP of organic ligands relevant in the context of nuclear waste disposal, and to understand their impact on the surface properties of cement.

Funder

H2020 Euratom

Svensk Kärnbränslehantering

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3