Neptunium mononitride as a target material for Pu-238 production

Author:

Peruski Kathryn M.

Abstract

Deep space exploration requires specialized sources for both thermal and power applications. Radioactive decay heat of plutonium-238 (238Pu) provides these sources in the form of radioisotope thermoelectric generators (RTGs). The 238Pu is produced via neutron capture reaction involving neptunium-237 (237Np) target material. Continual optimization of 237Np target materials and evaluation of potential alternative targets for production of 238Pu RTGs are advantageous for meeting ongoing space power system resource requirements. Current production of 238Pu for RTGs for the United States space program utilizes neptunium dioxide (237NpO2) targets; however, the use of neptunium mononitride (237NpN) presents an opportunity to increase the mass of 237Np per target compared to the dioxide form, as well as increase the thermal conductivity of the target. To assess the viability of a 237NpN target material, the material chemistry must be thoroughly evaluated, including synthesis methods and dissolution and reprocessing schemes. This review presents a summary of synthesis pathways for 237NpN based on published literature on actinide mononitrides. Specific literature on 237NpN is limited, necessitating evaluation of other actinide systems to gather parallels. This suggests a need for additional experimental studies on 237NpN. A particular limitation in the existing literature is a lack of information on the differences in material characteristics, such as morphology, particle size, and trace chemical impurities, as a function of synthesis method. These parameters may affect subsequent reactor performance or dissolution of irradiated targets. The evaluation of existing literature is presented with a focus on the efficacy of 237NpN targets for 238Pu production.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3