Recovery of neutron-irradiated VVER-440 RPV base metal and weld exposed to isothermal annealing at 343°C up to 2,000 h

Author:

Altstadt Eberhard,Bergner Frank,Brandenburg Jann-Erik,Chekhonin Paul,Dykas Jakub,Houska Mario,Ulbricht Andreas

Abstract

Neutron irradiation causes embrittlement of reactor pressure vessel (RPV) steels. Post-irradiation annealing is capable of partly or fully restoring the unembrittled condition. While annealing at high temperatures (e.g., 475°C) was successfully applied to extend the lifetime of operating VVER-440 reactors, the benefit of annealing at lower temperatures (e.g., 343°C–the maximum to which the primary cooling water can be heated) is a matter of debate. In this study, neutron-irradiated VVER-440 RPV base metal and weld were exposed to isothermal annealing at 343°C up to 2,000 h. Given the limited amount of material, the degree of recovery was estimated in terms of Vickers hardness, the ductile-brittle transition temperature derived from small punch tests, and the master curve reference temperature derived from fracture mechanics tests of mini samples. For the base metal, small-angle neutron scattering was applied to underpin the findings at the nm-scale. We have found significant partial recovery in both materials after annealing for 300 h or longer. The variations of the degree of recovery are critically discussed and put into the context of wet annealing.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3