Determination of Current Flow Induced by Transcutaneous Electrical Nerve Stimulation for the Treatment of Migraine: Potential for Optimization

Author:

Thomas Chris,Truong Dennis Q.,Lee Kiwon,Deblieck Choi,Androulakis Xiao Michelle,Datta Abhishek

Abstract

Introduction: Transcutaneous electrical nerve stimulation (TENS) for migraine involves the application of pulsatile stimulation through electrodes placed on the forehead to target the underlying trigeminal nerves. It is a simple, safe modality and has secured clinical approval in several markets including the European Union and the United States. Despite nearing almost 7 years of use (postclinical approval), the exact mechanism of action is not fully known. Guided by the need to stimulate the trigeminal nerves bilaterally, electrode dimensions are simply required to extend enough to cover the underlying nerves. The goal of this study is to examine induced current flow [magnitude and spatial distribution of electric field (EF)] and another driver of stimulation [activating function (AF)] due to TENS therapy for migraine for the first time. We further consider the effect of changing the electrode dimension and shape and propose a design modification to deliver optimal flow.Methods: We developed the first ultra-high-resolution finite element (FE) model of TENS for migraine incorporating the target supratrochlear (ST) and the supraorbital (SO) nerves. We first simulated the clinically approved V-shaped geometry. We then considered three additional designs: extended V-shaped, idealized pill-shaped, and finally an extended V-shaped but with greater contact spacing (extended V-shaped +CS).Results: Our findings revealed that the clinically approved electrode design delivered substantially higher mean current flow to the ST nerve in comparison with the SO nerves (Medial: 53% and Lateral: 194%). Consideration of an extended design (~10 mm longer and ~ 4 mm shorter) and a pill-like design had negligible impact on the induced current flow pattern. The extended V-shaped +CS montage delivered relatively comparable current flow to each of the three target nerves. The EF induced in the ST nerve was 49 and 141% higher in the Medial and Lateral SO nerve, respectively. When considering maximum induced values, the delivery of comparable stimulation was further apparent. Given the existing electrode design's established efficacy, our results imply that preferential targeting of the ST nerve is related to the mechanism of action. Additionally, if comparable targeting of all three nerves continues to hold promise, the extended V-shaped +CS montage presents an optimized configuration to explore in clinical studies.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3