Modulation of Muscle Pain Is Not Somatotopically Restricted: An Experimental Model Using Concurrent Hypertonic-Normal Saline Infusions in Humans

Author:

Dunn James S.,Mahns David A.,Nagi Saad S.

Abstract

We have previously shown that during muscle pain induced by infusion of hypertonic saline (HS), concurrent application of vibration and gentle brushing to overlying and adjacent skin regions increases the overall pain. In the current study, we focused on muscle-muscle interactions and tested whether HS-induced muscle pain can be modulated by innocuous/sub-perceptual stimulation of adjacent, contralateral, and remote muscles. Psychophysical observations were made in 23 healthy participants. HS (5%) was infused into a forearm muscle (flexor carpi ulnaris) to produce a stable baseline pain. In separate experiments, in each of the three test locations (n = 10 per site)—ipsilateral hand (abductor digiti minimi), contralateral forearm (flexor carpi ulnaris), and contralateral leg (tibialis anterior)—50 μl of 0.9% normal saline (NS) was infused (in triplicate) before, during, and upon cessation of HS-induced muscle pain in the forearm. In the absence of background pain, the infusion of NS was imperceptible to all participants. In the presence of HS-induced pain in the forearm, the concurrent infusion of NS into the ipsilateral hand, contralateral forearm, and contralateral leg increased the overall pain by 16, 12, and 15%, respectively. These effects were significant, reproducible, and time-locked to NS infusions. Further, the NS-evoked increase in pain was almost always ascribed to the forearm where HS was infused with no discernible percept attributed to the sites of NS infusion. Based on these observations, we conclude that intramuscular infusion of HS results in muscle hyperalgesia to sub-perceptual stimulation of muscle afferents in a somatotopically unrestricted manner, indicating the involvement of a central (likely supra-spinal) mechanism.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3