On determining the mechanical nociceptive threshold in pigs: a reliability study

Author:

Rettore Andreis Felipe,Mørch Carsten Dahl,Jensen Winnie,Meijs Suzan

Abstract

BackgroundA pressure algometer is a valuable tool for assessing the mechanical nociceptive threshold (MNT) in clinical pain studies. Recent research has turned to large animal models of pain because of the closer anatomy and physiology to humans. Although the reliability and usefulness of the MNT have been extensively validated in humans, similar data from large animals is still sparse.ObjectiveTherefore, the aim of the current study was to evaluate the reliability (within- and between-session) of MNT in the forelimb of pigs using a pressure algometer.MethodsNine animals were used (23–40 kg), and MNTs were measured at both the right and left limbs at three different sessions, with three repetitions per session. The intraclass correlation coefficient (ICC) was used as a metric for relative reliability. The standard error of measurement (SEM) and coefficient of variation (CV) was used to assess absolute reliability. Systematic bias was also evaluated.ResultsThe average ICC was found to be 0.71 and 0.45 for the between-session and within-session, respectively. CV ranged from 17.9% to 20.5%, with a grand average of 19.1%. The grand average SEM was 249.5 kPa (16.6%). No systematic differences were found for the MNT between sessions, which suggests that there was no habituation to the stimulus.ConclusionThe reliability indices obtained in this study are comparable to results obtained in other species or anatomical regions and substantiate the use of the pressure algometer as a valuable tool to investigate the nociceptive system in pigs and translation to the human nociceptive withdrawal reflex.

Publisher

Frontiers Media SA

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

Reference44 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3