Analysing Head-Thorax Choreography During Free-Flights in Bumblebees

Author:

Odenthal Luise,Doussot Charlotte,Meyer Stefan,Bertrand Olivier J. N.

Abstract

Animals coordinate their various body parts, sometimes in elaborate manners to swim, walk, climb, fly, and navigate their environment. The coordination of body parts is essential to behaviors such as, chasing, escaping, landing, and the extraction of relevant information. For example, by shaping the movement of the head and body in an active and controlled manner, flying insects structure their flights to facilitate the acquisition of distance information. They condense their turns into a short period of time (the saccade) interspaced by a relatively long translation (the intersaccade). However, due to technological limitations, the precise coordination of the head and thorax during insects' free-flight remains unclear. Here, we propose methods to analyse the orientation of the head and thorax of bumblebees Bombus terrestris, to segregate the trajectories of flying insects into saccades and intersaccades by using supervised machine learning (ML) techniques, and finally to analyse the coordination between head and thorax by using artificial neural networks (ANN). The segregation of flights into saccades and intersaccades by ML, based on the thorax angular velocities, decreased the misclassification by 12% compared to classically used methods. Our results demonstrate how machine learning techniques can be used to improve the analyses of insect flight structures and to learn about the complexity of head-body coordination. We anticipate our assay to be a starting point for more sophisticated experiments and analysis on freely flying insects. For example, the coordination of head and body movements during collision avoidance, chasing behavior, or negotiation of gaps could be investigated by monitoring the head and thorax orientation of freely flying insects within and across behavioral tasks, and in different species.

Funder

Deutsche Forschungsgemeinschaft

University of Sussex

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Reference56 articles.

1. AbadiM. AgarwalA. BarhamP. BrevdoE. ChenZ. CitroC. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems2015

2. The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances;Bagnall;Data Mining Knowl. Discov,2017

3. Finding the gap: a brightness-based strategy for guidance in cluttered environments;Baird;Proc. Biol. Sci. R Soc.,2016

4. A deep transfer learning approach for improved post-traumatic stress disorder diagnosis;Banerjee;Knowl. Inf. Syst.,2019

5. Prototypical components of honeybee homing flight behavior depend on the visual appearance of objects surrounding the goal;Braun;Front. Behav. Neurosci,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3