The Poly I:C maternal immune stimulation model shows unique patterns of brain metabolism, morphometry, and plasticity in female rats

Author:

Casquero-Veiga Marta,Lamanna-Rama Nicolás,Romero-Miguel Diego,Rojas-Marquez Henar,Alcaide Julia,Beltran Marc,Nacher Juan,Desco Manuel,Soto-Montenegro Maria Luisa

Abstract

Introduction: Prenatal infections are associated with an increased risk of the onset of schizophrenia. Rodent models of maternal immune stimulation (MIS) have been extensively used in preclinical studies. However, many of these studies only include males, omitting pathophysiological features unique to females. The aim of this study is to characterize the MIS model in female rats using positron emission tomography (PET), structural magnetic resonance imaging (MR), and neuroplasticiy studies.Methods: In gestational day 15, Poly I:C (or Saline) was injected into pregnant Wistar rats to induce the MIS model. Imaging studies: [18F]-fluoro-2-deoxy-D-glucose-PET scans of female-offspring were acquired at post-natal day (PND) 35 and PND100. Furthermore, T2-MR brain images were acquired in adulthood. Differences in FDG uptake and morphometry between groups were assessed with SPM12 and Regions of Interest (ROI) analyses. Ex vivo study: The density of parvalbumin expressing interneurons (PV), perineuronal nets (PNN), and parvalbumin expressing interneurons surrounded by perineuronal nets (PV-PNN) were evaluated in the prelimbic cortex and basolateral amygdala using confocal microscopy. ROIs and neuroplasticity data were analyzed by 2-sample T-test and 2-way-ANOVA analyses, respectively.Results: A significant increase in brain metabolism was found in all animals at adulthood compared to adolescence. MIS hardly modified brain glucose metabolism in females, highlighting a significant hypometabolism in the thalamus at adulthood. In addition, MIS induced gray matter (GM) enlargements in the pituitary, hippocampus, substantia nigra, and cingulate cortex, and GM shrinkages in some thalamic nuclei, cerebelar areas, and brainstem. Moreover, MIS induced white matter shrinkages in the cerebellum, brainstem and corpus callosum, along with cerebrospinal fluid enlargements in the lateral and 4th ventricles. Finally, MIS reduced the density of PV, PNN, and PV-PNN in the basolateral amygdala.Conclusion: Our work showed in vivo the differential pattern of functional and morphometric affectation in the MIS model in females, as well as the deficits caused at the synaptic level according to sex. The differences obtained highlight the relevance of including both sexes in psychiatric research in order to consider their pathophysiological particularities and successfully extend the benefits obtained to the entire patient population.

Funder

Ministerio de Ciencia e Innovación

European Regional Development Fund

Centro de Investigación Biomédica en Red de Salud Mental

Plan Nacional sobre Drogas

Fundación Alicia Koplowitz

Fundación Tatiana Pérez de Guzmàn el Bueno

EU Joint Programme–Neurodegenerative Disease Research

Consejerà­a de Educación e Investigación

Instituto de Investigación Sanitaria Gregorio Marañón

Instituto de Salud Carlos III

Centro Nacional de Investigaciones Cardiovasculares

Generalitat Valenciana

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3