Marked Mild Cognitive Deficits in Humanized Mouse Model of Alzheimer’s-Type Tau Pathology

Author:

Cho Joshua D.,Kim Yoon A.,Rafikian Elizabeth E.,Yang Mu,Santa-Maria Ismael

Abstract

Hyperphosphorylation and the subsequent aggregation of tau protein into neurofibrillary tangles (NFTs) are well-established neuropathological hallmarks of Alzheimer’s disease (AD) and associated tauopathies. To further examine the impact and progression of human tau pathology in neurodegenerative contexts, the humanized tau (htau) mouse model was originally created. Despite AD-like tau pathological features recapitulated in the htau mouse model, robustness of behavioral phenotypes has not been fully established. With the ultimate goal of evaluating the htau mouse model as a candidate for testing AD therapeutics, we set out to verify, in-house, the presence of robust, replicable cognitive deficits in the htau mice. The present study shows behavioral data collected from a carefully curated battery of learning and memory tests. Here we report a significant short-term spatial memory deficit in aged htau mice, representing a novel finding in this model. However, we did not find salient impairments in long-term learning and memory previously reported in this mouse model. Here, we attempted to understand the discrepancies in the literature by highlighting the necessity of scrutinizing key procedural differences across studies. Reported cognitive deficits in the htau model may depend on task difficulty and other procedural details. While the htau mouse remains a unique and valuable animal model for replicating late onset AD-like human tau pathology, its cognitive deficits are modest under standard testing conditions. The overarching message is that before using any AD mouse model to evaluate treatment efficacies, it is imperative to first characterize and verify the presence of behavioral deficits in-house.

Funder

National Institute of Neurological Disorders and Stroke

National Institute on Aging

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3