Longitudinal Assessment of Working Memory Performance in the APPswe/PSEN1dE9 Mouse Model of Alzheimer’s Disease Using an Automated Figure-8-Maze

Author:

van Heusden Fran C.,Palacín i Bonsón Sara,Stiedl Oliver,Smit August B.,van Kesteren Ronald E.

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, with a long preclinical and prodromal phase. To enable the study of disease mechanisms, AD has been modeled in many transgenic animal lines and cognitive functioning has been tested using several widely used behavioral tasks. These tasks, however, are not always suited for repeated longitudinal testing and are often associated with acute stress such as animal transfer, handling, novelty, or stress related to the task itself. This makes it challenging to relate cognitive dysfunction in animal models to cognitive decline observed in AD patients. Here, we designed an automated figure-8-maze (F8M) to test mice in a delayed alternation task (DAT) in a longitudinal manner. Mice were rewarded when they entered alternate sides of the maze on subsequent trials. Automation as well as connection of the F8M set-up with a home cage reduces experimenter interference and minimizes acute stress, thus making it suitable for longitudinal testing and facilitating clinical translation. In the present study, we monitored cognitive functioning of 2-month-old APPswe/PSEN1dE9 (APP/PS1) mice over a period of 4 months. The percentage of correct responses in the DAT did not differ between wild-type and transgenic mice from 2 to 6 months of age. However, 6-month-old mice displayed an increase in the number of consecutive incorrect responses. These results demonstrate the feasibility of longitudinal testing using an automated F8M and suggest that APP/PS1 mice are not impaired at delayed spatial alternation until 6 months of age under the current experimental conditions.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3