Brain Somatic Variant in Ras-Like Small GTPase RALA Causes Focal Cortical Dysplasia Type II

Author:

Xu Han,Gao Kai,Liu Qingzhu,Wang Tianshuang,Zhang Zhongbin,Cai Lixin,Wu Ye,Jiang Yuwu

Abstract

PurposeIn our group’s previous study, we performed deep whole-exome sequencing and targeted amplicon sequencing in the postoperative brain tissue of epilepsy patients with focal cortical dysplasia type II (FCD II). We identified the first somatic variant of RALA in the brain tissue of a child with FCD type IIb. RALA encodes a small GTPase of the Ras superfamily. To date, the role of RALA in brain development is not yet known. In this study, we reported that the RALA somatic variant led to FCD type II through activation of the mammalian target of rapamycin (mTOR) pathways.Materials and MethodsHEK293T cells were transfected in vitro to analyze the expression of the RalA protein, as well as phosphorylated S6 (P-S6), one of the major markers of mTOR pathway activation, RalA GTPase activity, and the interaction between RalA and its downstream binding effectors. In vivo, wild-type, and mutant RALA plasmids were transfected into the local cortex of mice using in utero electroporation to evaluate the effect of RALA c.G482A on neuronal migration.ResultsThe RALA c.G482A mutation increased RalA protein expression, the abnormal activation of the mTOR pathways, RalA GTPase activity, and binding to downstream effectors. RALA c.G482A local transfection in the embryonic brain in utero induced abnormal cortical neuron migration in mice.ConclusionThis study demonstrated for the first time that the somatic gain-of-function variant of RALA activates the mTOR pathway and leads to neuronal migration disorders in the brain, facilitating the development of FCD II. Therefore, RALA brain somatic mutation may be one of the pathogenic mechanisms leading to FCD II, which is always related to drug-resistant epilepsy in children. However, more somatic variations of this gene are required to be confirmed in more FCD II patient brain samples.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3