An olfactory-based Brain-Computer Interface: electroencephalography changes during odor perception and discrimination

Author:

Morozova Marina,Bikbavova Alsu,Bulanov Vladimir,Lebedev Mikhail A.

Abstract

Brain-Computer Interfaces (BCIs) are devices designed for establishing communication between the central nervous system and a computer. The communication can occur through different sensory modalities, and most commonly visual and auditory modalities are used. Here we propose that BCIs can be expanded by the incorporation of olfaction and discuss the potential applications of such olfactory BCIs. To substantiate this idea, we present results from two olfactory tasks: one that required attentive perception of odors without any overt report, and the second one where participants discriminated consecutively presented odors. In these experiments, EEG recordings were conducted in healthy participants while they performed the tasks guided by computer-generated verbal instructions. We emphasize the importance of relating EEG modulations to the breath cycle to improve the performance of an olfactory-based BCI. Furthermore, theta-activity could be used for olfactory-BCI decoding. In our experiments, we observed modulations of theta activity over the frontal EEG leads approximately 2 s after the inhalation of an odor. Overall, frontal theta rhythms and other types of EEG activity could be incorporated in the olfactory-based BCIs which utilize odors either as inputs or outputs. These BCIs could improve olfactory training required for conditions like anosmia and hyposmia, and mild cognitive impairment.

Funder

Russian Science Foundation

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Olfactory EEG induced by odor: Used for food identification and pleasure analysis;Food Chemistry;2024-10

2. Meta-Review on Brain-Computer Interface (BCI) in the Metaverse;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3