The Convergence Model of Brain Reward Circuitry: Implications for Relief of Treatment-Resistant Depression by Deep-Brain Stimulation of the Medial Forebrain Bundle

Author:

Pallikaras Vasilios,Shizgal Peter

Abstract

Deep-brain stimulation of the medial forebrain bundle (MFB) can provide effective, enduring relief of treatment-resistant depression. Panksepp provided an explanatory framework: the MFB constitutes the core of the neural circuitry subserving the anticipation and pursuit of rewards: the “SEEKING” system. On that view, the SEEKING system is hypoactive in depressed individuals; background electrical stimulation of the MFB alleviates symptoms by normalizing activity. Panksepp attributed intracranial self-stimulation to excitation of the SEEKING system in which the ascending projections of midbrain dopamine neurons are an essential component. In parallel with Panksepp’s qualitative work, intracranial self-stimulation has long been studied quantitatively by psychophysical means. That work argues that the predominant directly stimulated substrate for MFB self-stimulation are myelinated, non-dopaminergic fibers, more readily excited by brief electrical current pulses than the thin, unmyelinated axons of the midbrain dopamine neurons. The series-circuit hypothesis reconciles this view with the evidence implicating dopamine in MFB self-stimulation as follows: direct activation of myelinated MFB fibers is rewarding due to their trans-synaptic activation of midbrain dopamine neurons. A recent study in which rats worked for optogenetic stimulation of midbrain dopamine neurons challenges the series-circuit hypothesis and provides a new model of intracranial self-stimulation in which the myelinated non-dopaminergic neurons and the midbrain dopamine projections access the behavioral final common path for reward seeking via separate, converging routes. We explore the potential implications of this convergence model for the interpretation of the antidepressant effect of MFB stimulation. We also discuss the consistent finding that psychomotor stimulants, which boost dopaminergic neurotransmission, fail to provide a monotherapy for depression. We propose that non-dopaminergic MFB components may contribute to the therapeutic effect in parallel to, in synergy with, or even instead of, a dopaminergic component.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3