Brain Neural Activity Patterns in an Animal Model of Antidepressant-Induced Manic Episodes

Author:

Chen Min,Chen Guangdong,Tian Hongjun,Dou Guangqian,Fang Tao,Cai Ziyao,Cheng Langlang,Chen Suling,Chen Ce,Ping Jing,Lin Xiaodong,Chen Chunmian,Zhu Jingjing,Zhao Feifei,Liu Chuanxin,Yue Weihua,Song Xueqin,Zhuo Chuanjun

Abstract

Background: In the treatment of patients with bipolar disorder (BP), antidepressant-induced mania is usually observed. The rate of phase switching (from depressive to manic) in these patients exceeds 22%. The exploration of brain activity patterns during an antidepressant-induced manic phase may aid the development of strategies to reduce the phase-switching rate. The use of a murine model to explore brain activity patterns in depressive and manic phases can help us to understandthe pathological features of BP. The novel object recognition preference ratio is used to assess cognitive ability in such models.Objective: To investigate brain Ca2+ activity and behavioral expression in the depressive and manic phases in the same murine model, to aid understanding of brain activity patterns in phase switching in BP.Methods: In vivo two-photon imaging was used to observe brain activity alterations in a murine model in which induce depressive-like and manic-like behaviors were induced sequentially. The immobility time was used to assess depressive-like symptoms and the total distance traveled was used to assess manic-like symptoms.Results: In vivo two-photon imaging revealed significantly reduced brain Ca2+ activity in temporal cortex pyramidal neurons in the depressive phase in mice exposed to chronic unpredictable mild stress compared with naïve controls. The brain Ca2+ activity correlated negatively with the novel object recognition preference ratio within the immobility time. Significantly increased brain Ca2+ activity was observed in the ketamine-induced manic phase. However, this activity did not correlate with the total distance traveled. The novel object recognition preference ratio correlated negatively with the total distance traveled in the manic phase.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3