Mosquito Host Seeking in 3D Using a Versatile Climate-Controlled Wind Tunnel System

Author:

Hinze Annika,Lantz Jörgen,Hill Sharon R.,Ignell Rickard

Abstract

Future anthropogenic climate change is predicted to impact sensory-driven behaviors. Building on recent improvements in computational power and tracking technology, we have developed a versatile climate-controlled wind tunnel system, in which to study the effect of climate parameters, including temperature, precipitation, and elevated greenhouse gas levels, on odor-mediated behaviors in insects. To establish a baseline for future studies, we here analyzed the host-seeking behavior of the major malaria vector mosquito, Anopheles gambiae sensu strico, to human odor and carbon dioxide (CO2), under tightly controlled climatic conditions, and isolated from potential background contamination by the presence of an experimenter. When presented with a combination of human foot odor and CO2 (case study I), mosquitoes engaged in faster crosswind flight, spent more time in the filamentous odor plume and targeted the odor source more successfully. In contrast, female An. gambiae s. s. presented with different concentrations of CO2 alone, did not display host-seeking behavior (case study II). These observations support previous findings on the role of human host-associated cues in host seeking and confirm the role of CO2 as a synergist, but not a host-seeking cue on its own. Future studies are aimed at investigating the effect of climate change on odor-mediated behavior in mosquitoes and other insects. Moreover, the system will be used to investigate detection and processing of olfactory information in various behavioral contexts, by providing a fine-scale analysis of flight behavior.

Funder

Vetenskapsrådet

Sveriges Lantbruksuniversitet

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3