Author:
Huang Huimei,Wu Xiantao,He Qing,Liang Xuqin,Ding Yi,Li Zhijuan,Ren Zhanping,Bao Ying
Abstract
Familial renal glucosuria (FRG) is a rare genetic condition featured by isolated glucosuria without hyperglycemia or other kidney diseases. It is caused by pathogenic mutations of the SGLT2 (Sodium-Glucose Cotransporter 2) gene, whose protein product is responsible for reabsorbing the majority of glucose in the early proximal convoluted tubule. Hitherto, quite an array of variants of SGLT2 have been identified in patients of FRG. In this study, we performed whole exome sequencing on three Chinese pediatric patients with FRG and uncovered three compound heterozygous variants of SGLT2: c.1333C > T (p.Q445X) and c.1130–5 C > G; c.1438G > T (p.V480F) and c.346G > A (p.V116M); c.1175C > G (p.S392C) and c.1333C > T (p.Q445X). Among the total of five variants, c.1333C > T (p.Q445X), c.1438G > T (p.V480F) and c.1175C > G (p.S392C) represented novel variants that had not been reported in any genetic databases. All five variants had extremely low allele frequencies and the amino acids loci affected by missense variants were highly conserved in vertebrate species. Bioinformatic tools predicted that all five variants might disrupt the function of SGLT2, which were likely to be causal for FRG in these patients. Our findings expand the variant spectrum of SGLT2 associated with FRG and provide novel insights into mechanism of action of this transporter, which will aid in the development of novel SGLT2 inhibitors for treatment of type 2 diabetes and cardiovascular diseases.
Subject
Pediatrics, Perinatology and Child Health
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献