Pragmatic physiologically-based pharmacokinetic modeling to support clinical implementation of optimized gentamicin dosing in term neonates and infants: proof-of-concept

Author:

de Hoop-Sommen Marika A.,van der Heijden Joyce E. M.,Freriksen Jolien J. M.,Greupink Rick,de Wildt Saskia N.

Abstract

IntroductionModeling and simulation can support dosing recommendations for clinical practice, but a simple framework is missing. In this proof-of-concept study, we aimed to develop neonatal and infant gentamicin dosing guidelines, supported by a pragmatic physiologically-based pharmacokinetic (PBPK) modeling approach and a decision framework for implementation.MethodsAn already existing PBPK model was verified with data of 87 adults, 485 children and 912 neonates, based on visual predictive checks and predicted-to-observed pharmacokinetic (PK) parameter ratios. After acceptance of the model, dosages now recommended by the Dutch Pediatric Formulary (DPF) were simulated, along with several alternative dosing scenarios, aiming for recommended peak (i.e., 8–12 mg/L for neonates and 15–20 mg/L for infants) and trough (i.e., <1 mg/L) levels. We then used a decision framework to weigh benefits and risks for implementation.ResultsThe PBPK model adequately described gentamicin PK. Simulations of current DPF dosages showed that the dosing interval for term neonates up to 6 weeks of age should be extended to 36–48 h to reach trough levels <1 mg/L. For infants, a 7.5 mg/kg/24 h dose will reach adequate peak levels. The benefits of these dose adaptations outweigh remaining uncertainties which can be minimized by routine drug monitoring.ConclusionWe used a PBPK model to show that current DPF dosages for gentamicin in term neonates and infants needed to be optimized. In the context of potential uncertainties, the risk-benefit analysis proved positive; the model-informed dose is ready for clinical implementation.

Publisher

Frontiers Media SA

Subject

Pediatrics, Perinatology and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3