Remote cadaveric minimally invasive surgical training

Author:

Miyano Go,Takahashi Makoto,Suzuki Takamasa,Iida Hisae,Abe Eri,Kato Haruki,Yoshida Shiho,Lane Geoffrey J.,Ichimura Koichiro,Sakamoto Kazuhiro,Yamataka Atsuyuki,Okazaki Tadaharu

Abstract

ObjectiveThe aim of the study is to discuss the efficacy of live vs. remote cadaver surgical training (CST) for minimally invasive surgery (MIS).MethodsA cohort of 30 interns in their first and second years of training were divided into three groups: live observers (n = 12), live participants (n = 6), and remote observers: (n = 12). The interns had the opportunity to either observe or actively participate in two different surgical procedures, namely, laparoscopic lower anterior resection, performed by a colorectal surgical team, and laparoscopic fundoplication, performed by a pediatric surgical team. The procedures were conducted either at a base center or at a remote center affiliated with the institute. Some of the interns interacted directly with the surgical teams at the base center, and others interacted indirectly with the surgical teams from the remote center. All interns were administered questionnaires before and after completion of the CST in order to assess their understanding of various aspects related to the operating room layout/instruments (called “design”), accessing the surgical field (called “field”), understanding of anatomic relations (called “anatomy”), their skill of dissection (called “dissection”), ability to resolve procedural/technical problems (called “troubleshooting”), and their skill in planning surgery (called “planning”) according to their confidence to operate using the following scale: 1 = not confident to operate independently; 4 = confident to operate with a more senior trainee; 7 = confident to operate with a peer; and 10 = confident to operate with a less experienced trainee. A p < 0.05 was considered statistically significant.ResultsAll scores improved after CST at both the base and remote centers. The following significant increases were observed: for remote observers: “field” (2.67→4.92; p < .01), “anatomy” (3.58→5.75; p < .01), “dissection” (3.08→4.33; p = .01), and “planning” (3.08→4.33; p < .01); for live observers: “design” (3.75→6.17; p < .01), “field” (2.83→5.17; p < .01), “anatomy” (3.67→5.58; p < .01), “dissection” (3.17→4.58; p < .01), “troubleshooting” (2.33→3.67; p < .01), and “planning” (2.92→4.25; p < .01); and for live participants: “design” (3.83→6.33; p = .02), “field” (2.83→6.83; p < .01), “anatomy” (3.67→5.67; p < .01), “dissection” (2.83→6.17; p < .01), “troubleshooting” (2.17→4.17; p < .01), and “planning” (2.83→4.67; p < .01). Understanding of “design” improved significantly after CST in live observers compared with remote observers (p < .01). Understanding of “field and “dissection” improved significantly after CST in live participants compared with live observers (p = .01, p = .03, respectively). Out of the 12 remote observers, 10 participants (83.3%) reported that interacting with surgical teams was easy because they were not on-site.ConclusionsAlthough all the responses were subjective and the respondents were aware that observation was inferior to hands-on experience, the results from both centers were equivalent, suggesting that remote learning could potentially be viable when resources are limited.

Publisher

Frontiers Media SA

Subject

Pediatrics, Perinatology and Child Health

Reference10 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3