MDCT-based longitudinal automated airway and air trapping analysis in school-age children with mild cystic fibrosis lung disease

Author:

Weinheimer Oliver,Konietzke Philip,Wagner Willi L.,Weber Dorothea,Newman Beverly,Galbán Craig J.,Kauczor Hans-Ulrich,Mall Marcus A.,Robinson Terry E.,Wielpütz Mark O.

Abstract

ObjectivesQuantitative computed tomography (QCT) offers some promising markers to quantify cystic fibrosis (CF)-lung disease. Air trapping may precede irreversible bronchiectasis; therefore, the temporal interdependencies of functional and structural lung disease need to be further investigated. We aim to quantify airway dimensions and air trapping on chest CT of school-age children with mild CF-lung disease over two years.MethodsFully-automatic software analyzed 144 serial spirometer-controlled chest CT scans of 36 children (median 12.1 (10.2–13.8) years) with mild CF-lung disease (median ppFEV1 98.5 (90.8–103.3) %) at baseline, 3, 12 and 24 months. The airway wall percentage (WP5–10), bronchiectasis index (BEI), as well as severe air trapping (A3) were calculated for the total lung and separately for all lobes. Mixed linear models were calculated, considering the lobar distribution of WP5–10, BEI and A3 cross-sectionally and longitudinally.ResultsWP5–10 remained stable (P = 0.248), and BEI changed from 0.41 (0.28–0.7) to 0.54 (0.36–0.88) (P = 0.156) and A3 from 2.26% to 4.35% (P = 0.086) showing variability over two years. ppFEV1 was also stable (P = 0.276). A robust mixed linear model showed a cross-sectional, regional association between WP5–10 and A3 at each timepoint (P < 0.001). Further, BEI showed no cross-sectional, but another mixed model showed short-term longitudinal interdependencies with air trapping (P = 0.003).ConclusionsRobust linear/beta mixed models can still reveal interdependencies in medical data with high variability that remain hidden with simpler statistical methods. We could demonstrate cross-sectional, regional interdependencies between wall thickening and air trapping. Further, we show short-term regional interdependencies between air trapping and an increase in bronchiectasis. The data indicate that regional air trapping may precede the development of bronchiectasis. Quantitative CT may capture subtle disease progression and identify regional and temporal interdependencies of distinct manifestations of CF-lung disease.

Publisher

Frontiers Media SA

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3