Longitudinal Trajectories of Hair Cortisol: Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Early Childhood

Author:

Rovnaghi Cynthia R.,Rigdon Joseph,Roué Jean-Michel,Ruiz Monica O.,Carrion Victor G.,Anand Kanwaljeet J. S.

Abstract

The objective of this study was to examine if longitudinal trajectories of hair cortisol concentrations (HCC) measured at two or three yearly time points can identify 1-3 year old children at risk for altered hypothalamic-pituitary-adrenal (HPA)-axis function due to early life stress (ELS). HCC was measured (N = 575) in 265 children using a validated enzyme-linked immunosorbent assay. Hair was sampled in Clinic Visits (CV) centered at years 1, 2, and 3 (n = 45); 1 and 2 (n = 98); 1 and 3 (n = 27); 2 and 3 (n = 95). Log-transformed HCC values were partitioned using latent class mixed models (LCMM) to minimize the Bayesian Information Criterion. Multivariable linear mixed effects models for ln-HCC as a function of fixed effects for age in months and random effects for participants (to account for repeated measures) were generated to identify the factors associated with class membership. Children in Class 1 (n = 69; 9% Black) evidenced declining ln-HCC across early childhood, whereas Class 2 members (n = 196; 43% Black) showed mixed trajectories. LCMM with only Class 2 members revealed Class 2A (n = 17, 82% Black) with sustained high ln-HCC and Class 2B (n = 179, 40% Blacks) with mixed ln-HCC profiles. Another LCMM limited to only Class 2B members revealed Class 2B1 (n = 65, 57% Black) with declining ln-HCC values (at higher ranges than Class 1), and Class 2B2 (n = 113, 30% Black) with sustained high ln-HCC values. Class 1 may represent hair cortisol trajectories associated with adaptive HPA-axis profiles, whereas 2A, 2B1, and 2B2 may represent allostatic load with dysregulated profiles of HPA-axis function in response to varying exposures to ELS. Sequential longitudinal hair cortisol measurements revealed the allostatic load associated with ELS and the potential for developing maladaptive or dysregulated HPA-axis function in early childhood.

Publisher

Frontiers Media SA

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3