Paediatric pulmonary disease—are we diagnosing it right?

Author:

Rajendran Priya,Thomas Silla Varghese,Balaji Sarath,Selladurai Elilarasi,Jayachandran Ganesh,Malayappan Aravind,Bhaskar Adhin,Palanisamy Sivaraman,Ramamoorthy Thirumalani,Hasini Sindhu,Hissar Syed

Abstract

BackgroundIt has been reported that differential diagnosis of bacterial or viral pneumonia and tuberculosis (TB) in infants and young children is complex. This could be due to the difficulty in microbiological confirmation in this age group. In this study, we aimed to assess the utility of a real-time multiplex PCR for diagnosis of respiratory pathogens in children with pulmonary TB.MethodsA total of 185 respiratory samples [bronchoalveolar lavage (15), gastric aspirates (98), induced sputum (21), and sputum (51)] from children aged 3–12 years, attending tertiary care hospitals, Chennai, India, were included in the study. The samples were processed by N acetyl L cysteine (NALC) NAOH treatment and subjected to microbiological investigations for Mycobacterium tuberculosis (MTB) diagnosis that involved smear microscopy, Xpert® MTB/RIF testing, and liquid culture. In addition, DNA extraction from the processed sputum was carried out and was subjected to a multiplex real-time PCR comprising a panel of bacterial and fungal pathogens.ResultsOut of the 185 samples tested, a total of 20 samples were positive for MTB by either one or more identification methods (smear, culture, and GeneXpert). Out of these 20 MTB-positive samples, 15 were positive for one or more bacterial or fungal pathogens, with different cycle threshold values. Among patients with negative MTB test results (n = 165), 145 (87%) tested positive for one or more than one bacterial or fungal pathogens.ConclusionThe results suggest that tuberculosis could coexist with other respiratory pathogens causing pneumonia. However, a large-scale prospective study from different geographical settings that uses such simultaneous detection methods for diagnosis of childhood tuberculosis and pneumonia will help in assessing the utility of these tests in rapid diagnosis of respiratory infections.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3