m6A mRNA Methylation Was Associated With Gene Expression and Lipid Metabolism in Liver of Broilers Under Lipopolysaccharide Stimulation

Author:

Guo Feng,Zhang Yanhong,Ma Jinyou,Yu Yan,Wang Qiuxia,Gao Pei,Wang Li,Xu Zhiyong,Wei Xiaobing,Jing Mengna

Abstract

Hepatic inflammation is always accompanied with abnormal lipid metabolism. Whether N6-methyladenosine (m6A) mRNA methylation affects irregular inflammatory lipid level is unclear. Here, the m6A modification patterns in chicken liver at the acute stage of LPS-stimulated inflammation and at the normal state were explored via m6A and RNA sequencing and bioinformatics analysis. A total of 7,815 m6A peaks distributed in 5,066 genes were identified in the normal chicken liver and were mostly located in the CDS, 3′UTR region, and around the stop codon. At 2 h after the LPS intraperitoneal injection, the m6A modification pattern changed and showed 1,200 different m6A peaks. The hyper- and hypo-m6A peaks were differentially located, with the former mostly located in the CDS region and the latter in the 3′UTR and in the region near the stop codon. The hyper- or hypo-methylated genes were enriched in different GO ontology and pathways. Co-analysis revealed a significantly positive relationship between the fold change of m6A methylation level and the relative fold change of mRNA expression. Moreover, computational prediction of protein–protein interaction (PPI) showed that genes with altered m6A methylation and mRNA expression levels were clustered in processes involved in lipid metabolism, immune response, DNA replication, and protein ubiquitination. CD18 and SREBP-1 were the two hub genes clustered in the immune process and lipid metabolism, respectively. Hub gene AGPAT2 was suggested to link the immune response and lipid metabolism clusters in the PPI network. This study presented the first m6A map of broiler chicken liver at the acute stage of LPS induced inflammation. The findings may shed lights on the possible mechanisms of m6A-mediated lipid metabolism disorder in inflammation.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3