Screening for Combination Cancer Therapies With Dynamic Fuzzy Modeling and Multi-Objective Optimization

Author:

Spolaor Simone,Scheve Martijn,Firat Murat,Cazzaniga Paolo,Besozzi Daniela,Nobile Marco S.

Abstract

Combination therapies proved to be a valuable strategy in the fight against cancer, thanks to their increased efficacy in inducing tumor cell death and in reducing tumor growth, metastatic potential, and the risk of developing drug resistance. The identification of effective combinations of drug targets generally relies on costly and time consuming processes based on in vitro experiments. Here, we present a novel computational approach that, by integrating dynamic fuzzy modeling with multi-objective optimization, allows to efficiently identify novel combination cancer therapies, with a relevant saving in working time and costs. We tested this approach on a model of oncogenic K-ras cancer cells characterized by a marked Warburg effect. The computational approach was validated by its capability in finding out therapies already known in the literature for this type of cancer cell. More importantly, our results show that this method can suggest potential therapies consisting in a small number of molecular targets. In the model of oncogenic K-ras cancer cells, for instance, we identified combination of up to three targets, which affect different cellular pathways that are crucial for cancer proliferation and survival.

Publisher

Frontiers Media SA

Subject

Genetics(clinical),Genetics,Molecular Medicine

Reference64 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MPFFPSDC: A multi-pooling feature fusion model for predicting synergistic drug combinations;Methods;2023-09

2. Light-initiated aggregation of gold nanoparticles for synergistic chemo-photothermal tumor therapy;Nanoscale Advances;2023

3. An Integrated Fuzzy Logic System under Microsoft Azure using Simpful;2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE);2022-07-18

4. A comparison of multi-objective optimization algorithms to identify drug target combinations;2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB);2021-10-13

5. Combinational therapeutics to combat cancer;Bioinformation;2021-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3