Integrated transcriptome and network analysis identifies EZH2/CCNB1/PPARG as prognostic factors in breast cancer

Author:

Li Yalun,Chen Gang,Zhang Kun,Cao Jianqiao,Zhao Huishan,Cong Yizi,Qiao Guangdong

Abstract

Breast cancer (BC) has high morbidity, with significant relapse and mortality rates in women worldwide. Therefore, further exploration of its pathogenesis is of great significance. This study selected therapy genes and possible biomarkers to predict BC using bioinformatic methods. To this end, the study examined 21 healthy breasts along with 457 BC tissues in two Gene Expression Omnibus (GEO) datasets and then identified differentially expressed genes (DEGs). Survival-associated DEGs were screened using the Kaplan–Meier curve. Based on Gene Ontology (GO) annotation, survival-associated DEGs were mostly associated with cell division and cellular response to hormone stimulus. The enriched Kyoto Encyclopedia of Gene and Genome (KEGG) pathway was mostly correlated with cell cycle and tyrosine metabolism. Using overlapped survival-associated DEGs, a survival-associated PPI network was constructed. PPI analysis revealed three hub genes (EZH2, CCNB1, and PPARG) by their degree of connection. These hub genes were confirmed using The Cancer Genome Atlas (TCGA)-BRCA dataset and BC tissue samples. Through Gene Set Enrichment Analysis (GSEA), the molecular mechanism of the potential therapy and prognostic genes were evaluated. Thus, hub genes were shown to be associated with KEGG_CELL_CYCLE and VANTVEER_BREAST_CANCER_POOR_PROGNOSIS gene sets. Finally, based on integrated bioinformatics analysis, this study identified three hub genes as possible prognostic biomarkers and therapeutic targets for BC. The results obtained further understanding of the underground molecular mechanisms related to BC occurrence and prognostic outcomes.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3