A resource scheduling method for reliable and trusted distributed composite services in cloud environment based on deep reinforcement learning

Author:

Yu Lei,Yu Philip S.,Duan Yucong,Qiao Hongyu

Abstract

With the vigorous development of Internet technology, applications are increasingly migrating to the cloud. Cloud, a distributed network environment, has been widely extended to many fields such as digital finance, supply chain management, and biomedicine. In order to meet the needs of the rapid development of the modern biomedical industry, the biological cloud platform is an inevitable choice for the integration and analysis of medical information. It improves the work efficiency of the biological information system and also realizes reliable and credible intelligent processing of biological resources. Cloud services in bioinformatics are mainly for the processing of biological data, such as the analysis and processing of genes, the testing and detection of human tissues and organs, and the storage and transportation of vaccines. Biomedical companies form a data chain on the cloud, and they provide services and transfer data to each other to create composite services. Therefore, our motivation is to improve process efficiency of biological cloud services. Users’ business requirements have become complicated and diversified, which puts forward higher requirements for service scheduling strategies in cloud computing platforms. In addition, deep reinforcement learning shows strong perception and continuous decision-making capabilities in automatic control problems, which provides a new idea and method for solving the service scheduling and resource allocation problems in the cloud computing field. Therefore, this paper designs a composite service scheduling model under the containers instance mode which hybrids reservation and on-demand. The containers in the cluster are divided into two instance modes: reservation and on-demand. A composite service is described as a three-level structure: a composite service consists of multiple services, and a service consists of multiple service instances, where the service instance is the minimum scheduling unit. In addition, an improved Deep Q-Network (DQN) algorithm is proposed and applied to the scheduling algorithm of composite services. The experimental results show that applying our improved DQN algorithm to the composite services scheduling problem in the container cloud environment can effectively reduce the completion time of the composite services. Meanwhile, the method improves Quality of Service (QoS) and resource utilization in the container cloud environment.

Funder

National Natural Science Foundation of China

Education Department of Hainan Province

Hainan University

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference29 articles.

1. A survey of scheduling algorithms in cloud computing;Almansour,2019

2. Task scheduling in cloud computing using lion optimization algorithm;Almezeini;Int. J. Adv. Comput. Sci. Appl.,2017

3. Performance analysis of virtual machines and containers in cloud computing;Barik,2016

4. Containers and cloud: From lxc to docker to kubernetes;Bernstein;IEEE Cloud Comput.,2014

5. Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach;Chen;IEEE Trans. Cybern.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3