PathwayMultiomics: An R Package for Efficient Integrative Analysis of Multi-Omics Datasets With Matched or Un-matched Samples

Author:

Odom Gabriel J.,Colaprico Antonio,Silva Tiago C.,Chen X. Steven,Wang Lily

Abstract

Recent advances in technology have made multi-omics datasets increasingly available to researchers. To leverage the wealth of information in multi-omics data, a number of integrative analysis strategies have been proposed recently. However, effectively extracting biological insights from these large, complex datasets remains challenging. In particular, matched samples with multiple types of omics data measured on each sample are often required for multi-omics analysis tools, which can significantly reduce the sample size. Another challenge is that analysis techniques such as dimension reductions, which extract association signals in high dimensional datasets by estimating a few variables that explain most of the variations in the samples, are typically applied to whole-genome data, which can be computationally demanding. Here we present pathwayMultiomics, a pathway-based approach for integrative analysis of multi-omics data with categorical, continuous, or survival outcome variables. The input of pathwayMultiomics is pathway p-values for individual omics data types, which are then integrated using a novel statistic, the MiniMax statistic, to prioritize pathways dysregulated in multiple types of omics datasets. Importantly, pathwayMultiomics is computationally efficient and does not require matched samples in multi-omics data. We performed a comprehensive simulation study to show that pathwayMultiomics significantly outperformed currently available multi-omics tools with improved power and well-controlled false-positive rates. In addition, we also analyzed real multi-omics datasets to show that pathwayMultiomics was able to recover known biology by nominating biologically meaningful pathways in complex diseases such as Alzheimer’s disease.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3